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ABSTRACT

Automated function prediction (AFP) of proteins is
of great significance in biology. AFP can be regarded
as a problem of the large-scale multi-label classifi-
cation where a protein can be associated with mul-
tiple gene ontology terms as its labels. Based on
our GOLabeler––a state-of-the-art method for the
third critical assessment of functional annotation
(CAFA3), in this paper we propose NetGO, a web
server that is able to further improve the performance
of the large-scale AFP by incorporating massive
protein-protein network information. Specifically, the
advantages of NetGO are threefold in using network
information: (i) NetGO relies on a powerful learning to
rank framework from machine learning to effectively
integrate both sequence and network information of
proteins; (ii) NetGO uses the massive network infor-
mation of all species (>2000) in STRING (other than
only some specific species) and (iii) NetGO still can
use network information to annotate a protein by ho-
mology transfer, even if it is not contained in STRING.
Separating training and testing data with the same
time-delayed settings of CAFA, we comprehensively
examined the performance of NetGO. Experimental
results have clearly demonstrated that NetGO signif-
icantly outperforms GOLabeler and other competing
methods. The NetGO web server is freely available at
http://issubmission.sjtu.edu.cn/netgo/.

INTRODUCTION

As the most basic structural molecules, proteins maintain
the basic cell activities and biodiversity (1). Identification
of protein/gene functions is of great significance to under-
stand the nature of biology. For this purpose, gene ontol-
ogy (GO), launched in 1998, has become the most influ-
ential ontology currently (2). So far, GO contains 45 013
biological concepts (February 2019), covering three differ-
ent ontologies, Molecular Function Ontology (MFO), Bio-
logical Process Ontology (BPO), and Cellular Component
Ontology (CCO). Due to the advancement of sequencing
technologies, the number of known protein sequences has
been significantly increased. Only a very tiny part of newly
obtained sequences, however, have experimental GO anno-
tations. For example, only <0.1% of ∼146 million protein
sequences in UniProKB (February 2019) have experimen-
tal GO annotations (3). This is because identifying pro-
tein functions by biological experiments is both time- and
resource-consuming. As such, automated function predic-
tion (AFP) has become increasingly important in reducing
the gap between the huge number of protein sequences and
very limited experimental annotations (4,5).

For advancing research on a large-scale AFP, the
community-wide Critical Assessment of Functional Anno-
tation (CAFA, http://biofunctionprediction.org/cafa/) has
been held three times, i.e., CAFA1 in 2010–2011, CAFA2
in 2013–2014 and CAFA3 in 2016–2017 (4,5). By using a
time-delayed evaluation procedure, CAFA assesses the ac-
curacy of protein function prediction submitted by partici-
pants. A large set of target proteins (∼100 000 in CAFA2
and CAFA3) was first available to the participants, who
were required to submit their predictions before the dead-
line (T0). A few months later (T1), target proteins with
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experimental annotations were then used as a benchmark
for performance evaluation. The benchmark data in CAFA
was grouped into two categories: no-knowledge and limited-
knowledge. The no-knowledge benchmark proteins refer to
those who do not have experimental annotations before T0,
but instead have at least one experimental annotation before
T1. The limited-knowledge benchmark proteins are those
who have the first experimental annotations in the target
domain between T0 and T1, as well as experimental anno-
tations in at least one other domain before T0. Currently,
>99.9% of all proteins have no experimental annotations.
This means that AFP for no-knowledge protein is valuable
to biologists.

From a machine learning viewpoint, AFP is a problem
of a large-scale multilabel classification, where multiple GO
terms (labels) can be assigned to a protein (instance) (6).
AFP faces two main challenges from the sides of the GO (la-
bel) and protein (instance). On the GO side, one protein can
be associated with multiple GO terms from all 45 000 GO
terms. All of these GO terms are organized in a hierarchical
structure under the three GO ontologies. If a protein is as-
signed by a GO term, for example, all GO terms located at
its ancestor nodes (in GO) of this term should be assigned to
this particular protein as well. The experimental GO anno-
tations of human proteins in Swissprot (7) (December 2017)
reveal that one human protein can be annotated by 74 GO
terms on average. On the protein side, information about
proteins is not limited to sequences. Sequences are just part
of all information about proteins. Sequences are static and
genetic, while proteins are alive and dynamic. Thus, an im-
perative issue is how to effectively integrate multiple types
of data other than protein sequences for AFP.

The results of past CAFA show that sequence-based AFP
methods can be the best-performing ones. Even the simple
homology-based methods by using BLAST or PSI-BLAST
are very competitive (8–10). Recently, we developed a top-
performing, sequence-based AFP method, called GOLa-
beler (11), to address the challenge on the GO term side.
GOLabeler deems the AFP as a ranking problem, and uti-
lizes a learning to rank (LTR) (12) framework to seam-
lessly integrate multiple types of sequence-based evidence,
such as homology, domain, family, motif, amino acid k-
mer, and biophysical properties. The final evaluation on
CAFA3 reported in the 2018 meeting of the function spe-
cial interest group at ISMB2018 (July 2018) concluded that
among nearly 150 submissions by ∼50 groups from all over
the world, GOLabeler scored among top-performing ap-
proaches in no-knowledge proteins under all of the three
GO ontologies in terms of Fmax (see Supplementary for the
definition and more detail). Despite this fact, many pro-
tein functions cannot be inferred from protein sequences
only. For example, a well-accepted hypothesis of network-
based methods is that interacting proteins should share sim-
ilar functions under the principle of ‘guilt by association’
(13,14). A natural question then arises as to whether other
types of protein information can further improve the per-
formance of GOLabeler for AFP.

We implement a new AFP web server called NetGO. The
basic idea of NetGO is to incorporate the network-based
evidence into the GOLabeler framework (i.e. LTR) so as to

improve the performance of a large-scale AFP. The advan-
tages of NetGO are as follows:

1. NetGO addresses both sides of the challenges: (i) the la-
bel side by using LTR; and (ii) the instance (protein) side
by incorporating network-based information;

2. NetGO is scalable to incorporate network information
at a large-scale level; and

3. The performance of NetGO has been validated on large-
scale datasets under the CAFA settings.

Experimental results have indicated that NetGO signif-
icantly outperformed GOLabeler in both BPO and CCO,
with the respective 14% and 3% improvements in terms of
AUPR (Area Under the Precision–Recall curve).

METHODS

Notation

Let D be a set of training data, Gi be the ith GO term, and Pj
be the jth protein. Denote S(Gi, Pj) as the score (obtained
by a AFP method), which quantifies the chance that Pj is
associated with Gi.

For a given organism, there are m types of its protein
networks PN(l) (l = 1, ···, m) from different sources, such
as genomic context, gene expression, and physical interac-
tion. Each network PN(l) consists of two sets of nodes PV(l)

and edges PE(l). Each node corresponds to a protein in this
organism, while an edge represents an interaction (associa-
tion) between two proteins. In the l-th network, we denote
PE(l)(i, j) as the edge between nodes PV(l)

i and PV(l)
j with

�(l)(i, j) ∈ [0, 1] as its weight, which measures the confidence
of an association between the two nodes. Given a target pro-
tein Pj and GO term Gi, the core idea of NetGO is to esti-
mate S(Gi, Pj) by using both sequence and all available net-
works PN(l)(l = 1, ···, m) of different organisms.

Learning to Rank

Within the framework of learning to rank (LTR) (12),
NetGO integrates both protein sequence and network in-
formation effectively and efficiently to improve the perfor-
mance of the large-scale AFP. As a powerful machine learn-
ing paradigm, LTR aims to rank instances in terms of their
optimal ordering, rather than to produce a numerical score
for each of the instances. As mentioned before, the essence
of AFP lies in ranking GO terms (labels) in order of their
relevance to a given query protein. The detailed method
used in our LTR is a pairwise approach, which can be cast
as a problem of pairwise classification. In this kind of the
approach, given pairs of GO terms with respect to a spe-
cific protein, the LTR model tries to tell which GO term is
more relevant by ranking more relevant GO terms at top
positions in the list. During the testing, the top rank GO
terms are chosen as the true labels, after they are ordered
by their prediction scores.

In this study, we make use of LambdaMART, a pair-
wise LTR approach, for AFP (15). This is because it has
demonstrated a good performance in several international
machine learning competitions, such as BioASQ challenge
(16,17) and Yahoo Learning to Rank competition (18).
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Figure 1. The framework of NetGO with seven steps. The top five component methods use sequence information, while Net-KNN relies on network
information. An offline training process consists of Steps 1 −→ 3 −→ 4 −→ 5, while an online test process is Steps 2 −→ 3 −→ 6 −→ 7.

NetGO: overview

Figure 1 illustrates the whole framework of NetGO. The ba-
sic idea of NetGO is to integrate six component methods in
the framework of LTR for better AFP performance. The
five components of Naive, BLAST-KNN, LR-3mer, LR-
Interpro, and LR-ProFET are from GOLabeler that uses
protein sequence information only (11) (note: KNN and
LR stand for k-nearest neighbors and logistic regression,
respectively). On the other hand, the newly developed com-
ponent, called Net-KNN, makes use of network informa-
tion.

NetGO has to be trained before accepting test queries
(proteins). As shown in the figure, an offline training pro-
cess consists of Steps 1 −→ 3 −→ 4 −→ 5, while an online test
process is Steps 2 −→ 3 −→ 6 −→ 7. Note that Step 6 relies on
Step 5 of Ranking model that has been learned from the
training data. The training data contains a number of in-
stances that consist of protein sequences, their network in-
formation, and their associated ground-truth GO annota-
tions. In other words, a protein is associated with a number
of GO terms in the form of a pair of protein-a GO term and
their score (score 1 for relevant and score 0 for irrelevant).
During the training, given a training protein, NetGO first
relies on each component method in Step 3 to predict the
association score of each GO term to this protein. The top k
(we used k = 30 in NetGO. See the Result section.) predicted
GO terms by each component are combined to generate
the candidate GO terms. For each candidate GO term, we
use their association scores to form a six-dimensional fea-
ture vector. Second, Step 4 of LTR tries to learn a ranking
model to minimize the number of incorrectly ordered pairs
in the training data. This minimization of the cost function
is achieved by adjusting the parameters of Steps 3, 4 and

5. In particular, LTR aims to produce an optimal ordering
of GO annotations for all pairs of the proteins in the train-
ing data. As such, LTR does not care much about the exact
score that each candidate obtains, but does care about the
relative ordering among all pairs of the candidate in the out-
put list.

During a test, NetGO accepts a protein query with its net-
work information. Again, the six components in Step 3 use
their already learned parameters to extract the features of
this protein, producing a score feature vector of length six.
Candidate GO terms, i.e., feature vectors, are then inputted
into Step 6 of the LTR model. A ranked list of GO terms is
returned as the final output of NetGO for the query protein
in Step 7.

NetGO: Six component models

In the following, we briefly describe the six component
methods of NetGO. Note that the details of the top five
component methods can be found in (11), and the formula
for Net-KNN is given in the supplement.

Naive. Naive is an official baseline of CAFA. For a given
Pj, the score that Pj is associated with Gi is defined as the
relative frequency of Gi in D.

BLAST-KNN. For a given protein Pj and a specific GO
term Gi, their S(Gi, Pj) of BLAST-KNN is computed as
weighted voting by Pj’s homologous proteins in the train-
ing data. The weight of such a homologous protein is set to
its bit-score (similarity score) by BLAST alignment(The E-
value cutoff was set to 0.001 in our experiments). The higher
the normalized sum of bit-scores of homologous proteins of
Pj is associated with Gi, the bigger S(Gi, Pj) will become.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/47/W

1/W
379/5491749 by guest on 24 D

ecem
ber 2019

Administrator
高亮



W382 Nucleic Acids Research, 2019, Vol. 47, Web Server issue

Figure 2. The procedure of Net-KNN.

LR-3mer, LR-InterPro and LR-ProFET. We briefly com-
pare the three LR-based components in terms of their
different features used: (i) LR-3mer: The frequency
of amino acid trigram (3mer) is counted for each
protein to produce 8000 (=203) features in total. (ii)
LR-InterPro: we run InterProScan(http://www.ebi.ac.uk/
interpro/interproscan.html) to obtain 33 879 binary fea-
tures that represent the absence /presence of a large number
of motifs, protein families, and domains in InterPro (19).
(iii) LR-ProFET: Having been used in various function pre-
dictions, ProFET (20) consists of 1170 features including
elementary biophysical properties, and local potential fea-
tures.

Net-KNN. Net-KNN is capable of identifying candidate
GO terms for each protein by using network informa-
tion. In essence, the basic idea of Net-KNN is similar to
that of BLAST-KNN. The sequence similarity (bit-score
by BLAST) in BLAST-KNN is replaced by the association
score (edge weight) in a network for Net-KNN.

The procedure of Net-KNN is illustrated in Figure
2. Given a test protein Pj and a protein network (from
STRING in our experiments), Net-KNN computes the
score S(Gi, Pj) between Pj and GO term Gi by using one
of the following three methods (see the supplementary ma-
terials for the detailed formulas).

1) STRI: If Pj appears in STRING (meaning that PVj ex-
ists), the neighbor nodes PVk of PVj in the network will
be used;

2) HOMO: Net-KNN searches for the homologous pro-
tein in STRING of Pj with the highest bit-score by using

BLAST with the cutoff E-value of 0.001. If found, this
protein will be used as PVj, together with its neighboring
nodes PVk; and

3) NOHO: Net-KNN will return zero if no homologous
proteins are found.

Given m networks PN(l) (l = 1, ···, m) over the same set of
nodes, the aggregated weight �(PVj, PVk) can be computed
in an ensemble way (see Equation (2) in the supplementary
materials). The higher the weight of two proteins in all of the
m individual networks is, the higher their aggregated weight
is.

Note that the different types of networks and the various
ways of their combinations affect the weights and the final
performance.

RESULTS

Benchmark Datasets

The validation datasets were generated by following the pro-
cedures of CAFA1 (4), CAFA2 (5) and CAFA3. Specif-
ically, protein sequences were downloaded from UniProt
(3), while experimental annotations were extracted from
SwissProt (7), GOA(http://www.ebi.ac.uk/GOA) (21), and
GO (http://geneontology.org/page/download-annotations)
(2). STRING is a database of protein/gene interaction,
and the version 10.0a of STRING (22) was used as net-
work information. This database covers 9 643 763 proteins
from 2031 organisms with 932 553 897 interactions in to-
tal. The networks of 359 organisms appearing in the train-
ing data were used in Net-KNN. NetGO made use of the
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Table 1. Performance comparisons of NetGO with its own components and competing methods against test data

Fmax AUPR
MFO BPO CCO MFO BPO CCO

Naive 0.317 0.255 0.604 0.169 0.115 0.610
BLAST-KNN 0.589 0.283 0.641 0.453 0.110 0.560
Net-KNN 0.344 0.306 0.642 0.158 0.097 0.568
DeepGO 0.379 0.243 0.569 0.239 0.092 0.535
GoFDR 0.542 0.271 0.570 0.338 0.067 0.329
GOLabeler 0.630 0.321 0.668 0.549 0.171 0.685
NetGO 0.631 0.341 0.674 0.557 0.195 0.706

six different types of networks in STRING: 0:neighbour-
hood, 1:fusion, 2:co-occurrence, 3:co-expression, 4:experi-
ment and 5:database.

Specifically, four datasets have been generated for NetGO
training and testing, where the proteins are annotated at dif-
ferent time stamps.

1. Training: the training data for the component methods
All data annotated in October 2015 or before.

2. LTR1: training data for LTR
no-knowledge proteins, experimentally annotated from
October 2015 to October 2016 and not before October
2015.

3. LTR2: training data for LTR
limited-knowledge proteins, experimentally annotated
from October 2015 to October 2016 and no before Oc-
tober 2015.

4. Test: testing data for competing methods
All data experimentally annotated after October 2016 by
October 2017 and not before October 2016.

Table 1 in the supplementary materials reports the
number of proteins in the above datasets. All these
datasets are available at https://drive.google.com/open?id=
1HLH1aCDxlrVpu1zKvgfdQFEFnbT8gChm.

Performance evaluation metrics

In our experiments, we use two measures for performance
evaluation: AUPR and Fmax . As a standard evaluation met-
ric in machine learning, AUPR punishes false positive pre-
diction. It is suitable for highly imbalanced data. For Fmax ,
we give the definition of this official metric of CAFA in the
supplementary materials.

Given a test set of proteins, we first obtain the predicted
association scores (probabilities) of each pair of a protein
and a GO term. According to these scores, we then sort all
pairs of proteins and GO terms, and evaluate the perfor-
mance by Fmax and AUPR. Similar to GOLabeler, we eval-
uate the top 100 GO terms predicted from every competing
method for each ontology by considering the importance of
the top GO terms.

Parameter settings

Similar to GOLabeler, both LTR1 and LTR2 were com-
bined to train the ranking model of NetGO, since it per-
formed better than using LTR1 only (11). The top 30 predic-
tions from each component were merged. This was because
this number provided the best performance in 5-fold cross
validation over LTR training data with four values {10, 30,

50 and 70} tested (see supplementary materials for the de-
tailed results and other settings for the components of GO-
Labeler and NetGO).

Validation results

Table 1 reports the test results of NetGO, GOLabeler, and
other compared methods. In the upper part of this table, we
report the results of the three component methods: Naive,
BLAST-KNN, and Net-KNN. Among these component
methods, BLAST-KNN performed best for MFO, while
Net-KNN did the best for BPO in terms of Fmax. For ex-
ample, BLAST-KNN achieved the Fmax of 0.589 in MFO,
followed by Net-KNN (0.344), and Naive (0.317). In the
middle part, we show the results of two competing meth-
ods, GoFDR (23) and DeepGO (24). GoFDR achieved the
good performance in the recent CAFA (5), while DeepGO
was a recently developed deep learning based methods. Us-
ing the same training data as NetGO, we trained these mod-
els with their recommended parameters. Note that DeepGO
made predictions on only MFO, BPO and CCO terms that
appeared more than 50, 250 and 50 times in the train-
ing data, respectively. The experimental results demonstrate
that NetGO outperformed both GoFDR and DeepGO in
all of three GO ontologies. The under-performing DeepGO
exposes the weakness of deep learning based methods that
work only on a small number of GO terms. This fact results
from the insufficient training data and high computational
complexity.

In the lower part of the table, we compare NetGO with
the state-of-the-art method of GOLabeler. Experimental
results show that NetGO outperformed GOLabeler in all
three GO Ontologies. The improvement is especially sig-
nificant in BPO and CCO. In particular, NetGO achieved
14% improvements over GOLabeler in terms of AUPR in
BPO, and around 3% improvements in CCO. This demon-
strates the advantages of incorporating network informa-
tion into the functional annotation of BPO and CCO. In ad-
dition, similar to the CAFA overview paper (5), we plotted
precision-recall curves for comparing all methods for BPO
in Figure 3. Finally, we used 100 bootstrapped datasets with
replacement to further validate the superiority of NetGO by
a paired t-test (P-values < 0.01 for all cases. See supplement
materials for the details).

THE NETGO WEB SERVER

Implementation

NetGO was implemented by using Python. Careful tests
had been performed to ensure the compatibility of com-
mon browsers on different operating systems. The FASTA-
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Figure 3. Precision-recall curves of NetGO compared with its own components and competing methods over BPO.

format data was processed by biopython(http://biopython.
org/), and sklearn (http://scikit-learn.org/stable/index.html)
was used to run logistic regression and xgboost (25) for
LTR. Training LR classifiers is time-consuming, so we store
all the trained LR classifiers on the server in order to make
fast predictions. NetGO is updated annually by (i) down-
loading new datasets on annotations and networks; (ii) up-
dating the InterProScan version and (iii) generating new LR
classifiers. New components will also be added to the exist-
ing framework.

Input

The NetGO web server is available at http://issubmission.
sjtu.edu.cn/netgo/. It has a simple user-friendly interface,
together with a detailed help page. Accepting protein se-
quences in the FASTA format, the NetGO web server is
able to process up to 1000 proteins for each job. The length
of each sequence and its species are not limited, but all se-
quences have to be amino acids specified in a single let-
ter code (ACDEFGHIKLMNPQRSTVWYVBZX*). Any
other non-white space characters in a query will be rejected
by the input processor with notification.

Output

For all query proteins, NetGO outputs prediction results
in MFO, BPO and CCO. By forming scores (of each of
candidate GO terms) predicted by all of the six compo-
nent methods as features, NetGO relies on LTR to rank
all candidate GO terms of each query protein. In partic-
ular, the top number of m (m = 20 by default, and can be
set to 30, 50 or 100) predicted GO terms in three ontolo-
gies and their obtained scores are displayed in a result table
for each query protein, as shown in Figure 4. Besides the
total score of NetGO, the respective prediction scores and
ranks of the three main component models, BLAST-KNN,
Net-KNN and LR-InterPro, are also listed in the table. In

fact, these scores and ranks correspond to those by using
sequence alignment, protein-protein network, and protein
domain information, respectively. Comparing these results,
users can easily understand the contributions of different
types of information to the final score of NetGO for a par-
ticular query protein. Except for displaying query results in
a table, the top predictions of GO terms are visualized by
using the AmiGO API (http://amigo.geneontology.org/) (2),
according to the hierarchical structure of GO. All GO terms
with prediction scores higher than 0.6 are highlighted with
colors. It is impossible to display all prediction results of
the submitted proteins within one web page for a large-scale
AFP. Therefore, only the top 10 (20 or 30 depending on the
user’s choice) proteins are shown on a result page. The full
list of all returned results, however, can be retrieved by an
URL from the same page.

Predicted GO terms in the three different ontologies
can be retrieved through the buttons of ‘Result:MF’, ‘Re-
sult:BP’, and ‘Result:CC’. As an example, Figure 4 shows
the prediction results on the sequence of an uncharacter-
ized protein (UniProt: O74486) in BPO. More specific terms
with higher predicted scores are considered to be more in-
formative, which are easily found from the visualized results.
The name of each GO term is provided, and a detailed de-
scription in AmiGO can be displayed by simply clicking it
in the table.

It is relatively fast (<2 h for 1000 proteins) for NetGO
to make a prediction. An URL for tracking a job status is
returned after each submission, together with a notification
email when results are available.

Case study

The wtf (for with Tf) gene families in the fission yeast
are functionally uncharacterized (26). Here, we used our
server to predict potential GO terms associated with the
wtf19 protein (UniProtKB: O74486) (27). As given in
our results (at http://issubmission.sjtu.edu.cn/netgo/result/
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Figure 4. An example of query results (UniProt: O74486) from the NetGO web server. The top 30 predicted GO terms in three ontologies and their assigned
scores are displayed in a table. The result visualization is also provided to show the overall GO structure. All GO terms with prediction scores higher than
0.6 are highlighted with colors.

Table 2. Comparisons of our web server NetGO with some other similar web servers for AFP

Web server Feature/component Integrated method
Maximum number of
sequences in one job

CombFunc (29) Protein sequence; protein–protein
interactions; gene co-expression; protein
domain

Support vector machine Up to 1

INGA (30) Sequence similarity; somain; protein
interaction network (PIN)

The consensus score calculated
as a joint probability

Up to 10

SIFTER (31) A protein family’s phylogenetic tree of each
specific domain

/ Up to 10 or all proteins in a
given species

FunFam (32) Functional classification of the domain
superfamilies

/ Up to 1

Argot2.5 (33) The e-values from BLAST and HMMER
searches

Weighted scheme Interactive (up to 100) or
batch (up to 10 001)

BAR 3.0 (34) A graph-based clustering of UniProtKB
sequences

/ Up to 1

DeepGO (24) Sequence-based information; PIN Convolutional neural network Up to 10
PANNZER2 (35) Sequence similarity; enrichment statistics

from the sequence neighborhood
Weighted k-nearest neighbor
classifier

Interactive (up to 10) or
batch (100 000)

MetaGO (36) Structure; sequence and sequence-profile;
PIN

Logistic regression Up to 1

BUSCA (37) Signal and transit peptides; GPI-anchors;
transmembrane domains

A rooted computation graph Up to 500

Phylo-PFP (38) Sequence similarity based on homology by
considering their phylogenetic distance

/ Up to 10

GOLabeler (11) GO term frequency; sequence alignment;
amino acid trigram; protein families, domains
and motifs; sequence-derived features

Learning to rank Up to 1000

NetGO The same five components in GOLabeler;
PIN

Learning to rank Up to 1000

1555046134), considering more specific predicted GO
terms, the core component Net-KNN of NetGO predicted
that the protein may be involved in the biological process of
‘regulation of transcription from RNA polymerase II pro-
moter (GO:0006357)’. Specifically, this prediction is sup-
ported by the predicted MFO term of ‘transcription fac-
tor activity, RNA polymerase II core promoter proximal
region sequence-specific binding (GO:0000982)’, as well
as the predicted CCO term of ‘nuclear chromosome part
(GO:0044454)’. Therefore, our NetGO speculates that the
wtf19 protein may act as an upstream regulatory element,

required for the regulation of transcription from RNA poly-
merase II promoter.

Comparisons with other web servers

A number of AFP methods used in CAFA can be publicly
accessed as web servers now, such as DcGO (28), Comb-
Func (29), INGA (30), SIFTER (31), FunFam (32), Ar-
got2.5 (33), BAR 3.0 (34), DeepGO (24), PANNZER2 (35),
MetaGO (36), BUSCA (37) and Phylo-PFP (38). We com-
pare the main characteristics of NetGO with some existing
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AFP web servers on three aspects, as reported in Table 2.
In particular, NetGO has at least three main advantages:
(i) it exploits a wide range of features or components such
as sequence-based and protein-protein interaction network-
based information; (ii) it employs a powerful learning to
rank framework to integrate diverse components for AFP
and (iii) it provides users with the large-scale prediction of
protein function at the cost of reasonable running time. It
can accept up to 1000 sequences in one online job, or even
unlimited for one offline job.

DISCUSSION AND CONCLUSION

In this paper, we have presented NetGO––a new AFP web
server that incorporates massive network information. A
combination of network information with other types of
data for better AFP has previously been reported including
sequence information, gene expression, and domain infor-
mation (such as Jones-UCL CAFA submissions (39) and
CombFunc (29)). So the use of network information pre-
sented in this study is not a totally new idea. However, we in-
tegrate several components into an effective framework that
has achieved the best performance on comprehensive exper-
iments with massive networks. Experimental results have
demonstrated that under the CAFA settings, NetGO sig-
nificantly outperformed GOLabeler in two GO ontologies,
BPO and CCO, and other competing methods of DeepGO
and GoFDR. The reasons for such a good performance of
NetGO are threefold: (i) a powerful LTR integration frame-
work; (ii) the massive and comprehensive network informa-
tion from STRING and (iii) the various sequence informa-
tion.

Running fast with a visualization interface, the NetGO
web server is suitable for large-scale protein function pre-
dictions. We believe that biologists would benefit from our
high performance web server.
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